MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. C94700 Bronze

AZ91E magnesium belongs to the magnesium alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
110
Elongation at Break, % 2.5 to 6.2
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
43
Tensile Strength: Ultimate (UTS), MPa 160 to 260
350 to 590
Tensile Strength: Yield (Proof), MPa 96 to 130
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 600
1030
Melting Onset (Solidus), °C 500
900
Specific Heat Capacity, J/kg-K 990
380
Thermal Conductivity, W/m-K 84
54
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
12
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 1.7
8.8
Embodied Carbon, kg CO2/kg material 22
3.5
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 990
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
110 to 700
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 69
18
Strength to Weight: Axial, points 25 to 42
11 to 19
Strength to Weight: Bending, points 37 to 53
13 to 18
Thermal Diffusivity, mm2/s 49
16
Thermal Shock Resistance, points 9.0 to 15
12 to 21

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 0 to 0.015
85 to 90
Iron (Fe), % 0 to 0.0050
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
0 to 0.2
Nickel (Ni), % 0 to 0.0010
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0.4 to 1.0
1.0 to 2.5
Residuals, % 0
0 to 1.3

Comparable Variants