MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. N06007 Nickel

AZ91E magnesium belongs to the magnesium alloys classification, while N06007 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.5 to 6.2
38
Fatigue Strength, MPa 81 to 85
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
79
Shear Strength, MPa 89 to 150
470
Tensile Strength: Ultimate (UTS), MPa 160 to 260
690
Tensile Strength: Yield (Proof), MPa 96 to 130
260

Thermal Properties

Latent Heat of Fusion, J/g 350
320
Maximum Temperature: Mechanical, °C 130
990
Melting Completion (Liquidus), °C 600
1340
Melting Onset (Solidus), °C 500
1260
Specific Heat Capacity, J/kg-K 990
450
Thermal Conductivity, W/m-K 84
10
Thermal Expansion, µm/m-K 27
14

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 1.7
8.4
Embodied Carbon, kg CO2/kg material 22
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 990
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
200
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
170
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 69
23
Strength to Weight: Axial, points 25 to 42
23
Strength to Weight: Bending, points 37 to 53
21
Thermal Diffusivity, mm2/s 49
2.7
Thermal Shock Resistance, points 9.0 to 15
18

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.015
1.5 to 2.5
Iron (Fe), % 0 to 0.0050
18 to 21
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 0 to 0.0010
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0