MakeItFrom.com
Menu (ESC)

AZ91E Magnesium vs. S32506 Stainless Steel

AZ91E magnesium belongs to the magnesium alloys classification, while S32506 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ91E magnesium and the bottom bar is S32506 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 75
270
Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 2.5 to 6.2
21
Fatigue Strength, MPa 81 to 85
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 89 to 150
440
Tensile Strength: Ultimate (UTS), MPa 160 to 260
710
Tensile Strength: Yield (Proof), MPa 96 to 130
500

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 130
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 84
16
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10 to 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 52 to 60
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
3.9
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 990
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.4 to 12
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 190
620
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
25
Strength to Weight: Axial, points 25 to 42
25
Strength to Weight: Bending, points 37 to 53
23
Thermal Diffusivity, mm2/s 49
4.3
Thermal Shock Resistance, points 9.0 to 15
19

Alloy Composition

Aluminum (Al), % 8.1 to 9.3
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.015
0
Iron (Fe), % 0 to 0.0050
60.8 to 67.4
Magnesium (Mg), % 88.8 to 91.3
0
Manganese (Mn), % 0.17 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 0.0010
5.5 to 7.2
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.9
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0.050 to 0.3
Zinc (Zn), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0