MakeItFrom.com
Menu (ESC)

AZ92A-F Magnesium vs. As-cast C94700 Bronze

AZ92A-F magnesium belongs to the magnesium alloys classification, while as-cast C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AZ92A-F magnesium and the bottom bar is as-cast C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 47
110
Elongation at Break, % 3.8
32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
43
Tensile Strength: Ultimate (UTS), MPa 170
350
Tensile Strength: Yield (Proof), MPa 83
160

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 590
1030
Melting Onset (Solidus), °C 440
900
Specific Heat Capacity, J/kg-K 980
380
Thermal Conductivity, W/m-K 52
54
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
12
Electrical Conductivity: Equal Weight (Specific), % IACS 62
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 1.8
8.8
Embodied Carbon, kg CO2/kg material 22
3.5
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 980
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.4
89
Resilience: Unit (Modulus of Resilience), kJ/m3 73
110
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 67
18
Strength to Weight: Axial, points 27
11
Strength to Weight: Bending, points 38
13
Thermal Diffusivity, mm2/s 30
16
Thermal Shock Resistance, points 10
12

Alloy Composition

Aluminum (Al), % 8.3 to 9.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 0 to 0.25
85 to 90
Iron (Fe), % 0
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 86.7 to 90
0
Manganese (Mn), % 0.1 to 0.35
0 to 0.2
Nickel (Ni), % 0 to 0.010
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 1.6 to 2.4
1.0 to 2.5
Residuals, % 0
0 to 1.3