MakeItFrom.com
Menu (ESC)

Annealed AISI 316N vs. Annealed SAE-AISI D2

Both annealed AISI 316N and annealed SAE-AISI D2 are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is annealed AISI 316N and the bottom bar is annealed SAE-AISI D2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
230
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 38
16
Fatigue Strength, MPa 230
310
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 83
99
Shear Modulus, GPa 78
75
Shear Strength, MPa 420
460
Tensile Strength: Ultimate (UTS), MPa 620
760
Tensile Strength: Yield (Proof), MPa 270
470

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
31
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
4.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
8.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 53
50
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 27
15
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
100
Resilience: Unit (Modulus of Resilience), kJ/m3 180
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
27
Strength to Weight: Bending, points 20
24
Thermal Diffusivity, mm2/s 4.1
8.3
Thermal Shock Resistance, points 14
25

Alloy Composition

Carbon (C), % 0 to 0.080
1.4 to 1.6
Chromium (Cr), % 16 to 18
11 to 13
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 61.9 to 71.9
81.3 to 86.9
Manganese (Mn), % 0 to 2.0
0 to 0.6
Molybdenum (Mo), % 2.0 to 3.0
0.7 to 1.2
Nickel (Ni), % 10 to 14
0 to 0.3
Nitrogen (N), % 0.1 to 0.16
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 1.1