MakeItFrom.com
Menu (ESC)

Annealed N08800 Stainless Steel vs. EN 1.7362 +I Steel

Both annealed N08800 stainless steel and EN 1.7362 +I steel are iron alloys. Both are furnished in the annealed condition. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is annealed N08800 stainless steel and the bottom bar is EN 1.7362 +I steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
22
Fatigue Strength, MPa 180
140
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 400
320
Tensile Strength: Ultimate (UTS), MPa 600
510
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Maximum Temperature: Mechanical, °C 1100
510
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
4.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 5.3
1.8
Embodied Energy, MJ/kg 76
23
Embodied Water, L/kg 200
69

Common Calculations

PREN (Pitting Resistance) 21
6.9
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
90
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0 to 0.1
0.1 to 0.15
Chromium (Cr), % 19 to 23
4.0 to 6.0
Copper (Cu), % 0 to 0.75
0 to 0.3
Iron (Fe), % 39.5 to 50.7
91.5 to 95.2
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 30 to 35
0 to 0.3
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.0050
Titanium (Ti), % 0.15 to 0.6
0