MakeItFrom.com
Menu (ESC)

Austempered Cast Iron vs. 5026 Aluminum

Austempered cast iron belongs to the iron alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is austempered cast iron and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
70
Elongation at Break, % 1.1 to 13
5.1 to 11
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 62 to 69
26
Tensile Strength: Ultimate (UTS), MPa 860 to 1800
260 to 320
Tensile Strength: Yield (Proof), MPa 560 to 1460
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
510
Specific Heat Capacity, J/kg-K 490
890
Thermal Conductivity, W/m-K 42
130
Thermal Expansion, µm/m-K 13
23

Otherwise Unclassified Properties

Base Metal Price, % relative 2.9
9.5
Density, g/cm3 7.5
2.8
Embodied Carbon, kg CO2/kg material 1.8
8.9
Embodied Energy, MJ/kg 25
150
Embodied Water, L/kg 48
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 95
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 3970
100 to 440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 32 to 66
26 to 32
Strength to Weight: Bending, points 27 to 44
33 to 37
Thermal Diffusivity, mm2/s 11
52
Thermal Shock Resistance, points 25 to 53
11 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.050
88.2 to 94.7
Arsenic (As), % 0 to 0.020
0
Carbon (C), % 3.4 to 3.8
0
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 0 to 0.8
0.1 to 0.8
Iron (Fe), % 89.6 to 94
0.2 to 1.0
Magnesium (Mg), % 0 to 0.040
3.9 to 4.9
Manganese (Mn), % 0.3 to 0.4
0.6 to 1.8
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 0 to 2.0
0
Phosphorus (P), % 0 to 0.040
0
Selenium (Se), % 0 to 0.030
0
Silicon (Si), % 2.3 to 2.7
0.55 to 1.4
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15