Automotive Grey Cast Iron vs. Grade 18 Titanium
Automotive grey cast iron belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is automotive grey cast iron and the bottom bar is grade 18 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 180 | |
110 |
Elongation at Break, % | 9.6 to 14 | |
11 to 17 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 69 to 70 | |
40 |
Tensile Strength: Ultimate (UTS), MPa | 140 to 290 | |
690 to 980 |
Tensile Strength: Yield (Proof), MPa | 94 to 200 | |
540 to 810 |
Thermal Properties
Latent Heat of Fusion, J/g | 260 to 280 | |
410 |
Melting Completion (Liquidus), °C | 1380 to 1390 | |
1640 |
Melting Onset (Solidus), °C | 1340 to 1350 | |
1590 |
Specific Heat Capacity, J/kg-K | 490 | |
550 |
Thermal Conductivity, W/m-K | 41 to 43 | |
8.3 |
Thermal Expansion, µm/m-K | 12 to 14 | |
9.9 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.4 to 7.6 | |
1.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.8 to 9.1 | |
2.7 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.5 to 7.6 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 1.5 to 1.7 | |
41 |
Embodied Energy, MJ/kg | 21 to 24 | |
670 |
Embodied Water, L/kg | 44 to 51 | |
270 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 18 to 25 | |
87 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 25 to 110 | |
1380 to 3110 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
35 |
Strength to Weight: Axial, points | 5.2 to 11 | |
43 to 61 |
Strength to Weight: Bending, points | 8.0 to 13 | |
39 to 49 |
Thermal Diffusivity, mm2/s | 11 to 12 | |
3.4 |
Thermal Shock Resistance, points | 4.2 to 8.6 | |
47 to 67 |