MakeItFrom.com
Menu (ESC)

Automotive Malleable Cast Iron vs. ASTM B817 Type I

Automotive malleable cast iron belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is automotive malleable cast iron and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
100
Elongation at Break, % 1.0 to 10
4.0 to 13
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 70
40
Tensile Strength: Ultimate (UTS), MPa 350 to 720
770 to 960
Tensile Strength: Yield (Proof), MPa 220 to 590
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 260
410
Melting Completion (Liquidus), °C 1410
1600
Melting Onset (Solidus), °C 1370
1550
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 41
7.1
Thermal Expansion, µm/m-K 14
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
36
Density, g/cm3 7.6
4.4
Embodied Carbon, kg CO2/kg material 1.5
38
Embodied Energy, MJ/kg 20
610
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 30
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 950
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 13 to 26
48 to 60
Strength to Weight: Bending, points 14 to 24
42 to 49
Thermal Diffusivity, mm2/s 11
2.9
Thermal Shock Resistance, points 9.9 to 21
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 2.2 to 2.9
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 93.6 to 96.7
0 to 0.4
Manganese (Mn), % 0.15 to 1.3
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0.020 to 0.15
0
Silicon (Si), % 0.9 to 1.9
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0.020 to 0.2
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4