MakeItFrom.com
Menu (ESC)

Chromium 33 vs. 5657 Aluminum

Chromium 33 belongs to the otherwise unclassified metals classification, while 5657 aluminum belongs to the aluminum alloys. There are 21 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is chromium 33 and the bottom bar is 5657 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 45
6.6 to 15
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
26
Tensile Strength: Ultimate (UTS), MPa 850
150 to 200
Tensile Strength: Yield (Proof), MPa 430
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 36
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 6.0
8.4
Embodied Energy, MJ/kg 84
160
Embodied Water, L/kg 250
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
9.7 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 450
140 to 200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 30
15 to 20
Strength to Weight: Bending, points 25
23 to 28
Thermal Shock Resistance, points 21
6.7 to 8.6

Alloy Composition

Aluminum (Al), % 0
98.5 to 99.4
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 31 to 35
0
Copper (Cu), % 0.3 to 1.2
0 to 0.1
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 25.7 to 37.9
0 to 0.1
Magnesium (Mg), % 0
0.6 to 1.0
Manganese (Mn), % 0 to 2.0
0 to 0.030
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 30 to 33
0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.080
Sulfur (S), % 0 to 0.010
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.050