MakeItFrom.com
Menu (ESC)

Commercially Pure Zinc vs. EN 1.5501 Steel

Commercially pure zinc belongs to the zinc alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is commercially pure zinc and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
190
Elongation at Break, % 38
12 to 17
Poisson's Ratio 0.25
0.29
Shear Modulus, GPa 35
73
Tensile Strength: Ultimate (UTS), MPa 97
390 to 510
Tensile Strength: Yield (Proof), MPa 79
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 110
250
Maximum Temperature: Mechanical, °C 90
400
Melting Completion (Liquidus), °C 410
1460
Melting Onset (Solidus), °C 400
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 110
52
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 37
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 6.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 53
18
Embodied Water, L/kg 340
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 36
190 to 460
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 4.1
14 to 18
Strength to Weight: Bending, points 7.1
15 to 18
Thermal Diffusivity, mm2/s 44
14
Thermal Shock Resistance, points 3.0
11 to 15

Alloy Composition

Aluminum (Al), % 0 to 0.010
0
Boron (B), % 0
0.00080 to 0.0050
Cadmium (Cd), % 0 to 0.010
0
Carbon (C), % 0
0.13 to 0.16
Copper (Cu), % 0 to 0.080
0 to 0.25
Iron (Fe), % 0 to 0.020
98.4 to 99.269
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0
0.6 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.0030
0
Titanium (Ti), % 0 to 0.020
0
Zinc (Zn), % 99.827 to 100
0