MakeItFrom.com
Menu (ESC)

Commercially Pure Zinc vs. C15900 Copper

Commercially pure zinc belongs to the zinc alloys classification, while C15900 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is commercially pure zinc and the bottom bar is C15900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
110
Elongation at Break, % 38
6.5
Poisson's Ratio 0.25
0.34
Shear Modulus, GPa 35
43
Tensile Strength: Ultimate (UTS), MPa 97
720
Tensile Strength: Yield (Proof), MPa 79
240

Thermal Properties

Latent Heat of Fusion, J/g 110
210
Maximum Temperature: Mechanical, °C 90
200
Melting Completion (Liquidus), °C 410
1080
Melting Onset (Solidus), °C 400
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 110
280
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
48
Electrical Conductivity: Equal Weight (Specific), % IACS 37
49

Otherwise Unclassified Properties

Base Metal Price, % relative 11
30
Density, g/cm3 6.6
8.8
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 53
45
Embodied Water, L/kg 340
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
37
Resilience: Unit (Modulus of Resilience), kJ/m3 36
260
Stiffness to Weight: Axial, points 7.4
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 4.1
23
Strength to Weight: Bending, points 7.1
20
Thermal Diffusivity, mm2/s 44
80
Thermal Shock Resistance, points 3.0
26

Alloy Composition

Aluminum (Al), % 0 to 0.010
0.76 to 0.84
Cadmium (Cd), % 0 to 0.010
0
Carbon (C), % 0
0.27 to 0.33
Copper (Cu), % 0 to 0.080
97.5 to 97.9
Iron (Fe), % 0 to 0.020
0 to 0.040
Lead (Pb), % 0 to 0.030
0
Oxygen (O), % 0
0.4 to 0.54
Tin (Sn), % 0 to 0.0030
0
Titanium (Ti), % 0 to 0.020
0.66 to 0.74
Zinc (Zn), % 99.827 to 100
0