MakeItFrom.com
Menu (ESC)

R31539 Cobalt vs. 520.0 Aluminum

R31539 cobalt belongs to the cobalt alloys classification, while 520.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R31539 cobalt and the bottom bar is 520.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
66
Elongation at Break, % 13 to 22
14
Fatigue Strength, MPa 310 to 480
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
25
Tensile Strength: Ultimate (UTS), MPa 1000 to 1340
330
Tensile Strength: Yield (Proof), MPa 590 to 940
170

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Melting Completion (Liquidus), °C 1360
600
Melting Onset (Solidus), °C 1290
480
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 13
87
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
21
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
72

Otherwise Unclassified Properties

Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 8.2
9.8
Embodied Energy, MJ/kg 110
160
Embodied Water, L/kg 530
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 190
39
Resilience: Unit (Modulus of Resilience), kJ/m3 780 to 2000
230
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 33 to 44
35
Strength to Weight: Bending, points 27 to 32
41
Thermal Diffusivity, mm2/s 3.5
37
Thermal Shock Resistance, points 24 to 32
14

Alloy Composition

Aluminum (Al), % 0.3 to 1.0
87.9 to 90.5
Carbon (C), % 0 to 0.14
0
Chromium (Cr), % 26 to 30
0
Cobalt (Co), % 57.7 to 68.7
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 0 to 0.75
0 to 0.3
Lanthanum (La), % 0.030 to 0.2
0
Magnesium (Mg), % 0
9.5 to 10.6
Manganese (Mn), % 0 to 1.0
0 to 0.15
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.25
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15