MakeItFrom.com
Menu (ESC)

R31539 Cobalt vs. 6018 Aluminum

R31539 cobalt belongs to the cobalt alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R31539 cobalt and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 13 to 22
9.0 to 9.1
Fatigue Strength, MPa 310 to 480
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 86
26
Tensile Strength: Ultimate (UTS), MPa 1000 to 1340
290 to 300
Tensile Strength: Yield (Proof), MPa 590 to 940
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1290
570
Specific Heat Capacity, J/kg-K 450
890
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
140

Otherwise Unclassified Properties

Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 530
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 190
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 780 to 2000
360 to 380
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 33 to 44
28 to 29
Strength to Weight: Bending, points 27 to 32
34 to 35
Thermal Diffusivity, mm2/s 3.5
65
Thermal Shock Resistance, points 24 to 32
13

Alloy Composition

Aluminum (Al), % 0.3 to 1.0
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.14
0
Chromium (Cr), % 26 to 30
0 to 0.1
Cobalt (Co), % 57.7 to 68.7
0
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 0 to 0.75
0 to 0.7
Lanthanum (La), % 0.030 to 0.2
0
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 5.0 to 7.0
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0 to 0.25
0
Silicon (Si), % 0 to 1.0
0.5 to 1.2
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15