Ductile Cast Iron vs. ASTM A387 Grade 5 Steel
Both ductile cast iron and ASTM A387 grade 5 steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is ductile cast iron and the bottom bar is ASTM A387 grade 5 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 to 310 | |
150 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 170 to 180 | |
190 |
Elongation at Break, % | 2.1 to 20 | |
20 to 21 |
Poisson's Ratio | 0.28 to 0.31 | |
0.29 |
Shear Modulus, GPa | 64 to 70 | |
74 |
Shear Strength, MPa | 420 to 800 | |
310 to 380 |
Tensile Strength: Ultimate (UTS), MPa | 460 to 920 | |
500 to 600 |
Tensile Strength: Yield (Proof), MPa | 310 to 670 | |
230 to 350 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
260 |
Maximum Temperature: Mechanical, °C | 290 | |
510 |
Melting Completion (Liquidus), °C | 1160 | |
1460 |
Melting Onset (Solidus), °C | 1120 | |
1420 |
Specific Heat Capacity, J/kg-K | 490 | |
470 |
Thermal Conductivity, W/m-K | 31 to 36 | |
40 |
Thermal Expansion, µm/m-K | 11 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.4 | |
8.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.8 to 9.4 | |
9.2 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
4.3 |
Density, g/cm3 | 7.1 to 7.5 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
1.7 |
Embodied Energy, MJ/kg | 21 | |
23 |
Embodied Water, L/kg | 43 | |
69 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 17 to 80 | |
83 to 110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 280 to 1330 | |
140 to 320 |
Stiffness to Weight: Axial, points | 12 to 14 | |
14 |
Stiffness to Weight: Bending, points | 24 to 26 | |
25 |
Strength to Weight: Axial, points | 17 to 35 | |
18 to 21 |
Strength to Weight: Bending, points | 18 to 29 | |
18 to 20 |
Thermal Diffusivity, mm2/s | 8.9 to 10 | |
11 |
Thermal Shock Resistance, points | 17 to 35 | |
14 to 17 |
Alloy Composition
Carbon (C), % | 3.0 to 3.5 | |
0 to 0.15 |
Chromium (Cr), % | 0 | |
4.0 to 6.0 |
Iron (Fe), % | 93.7 to 95.5 | |
92.1 to 95.3 |
Manganese (Mn), % | 0 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 | |
0.45 to 0.65 |
Phosphorus (P), % | 0 to 0.080 | |
0 to 0.025 |
Silicon (Si), % | 1.5 to 2.8 | |
0 to 0.5 |
Sulfur (S), % | 0 | |
0 to 0.025 |