Ductile Cast Iron vs. S13800 Stainless Steel
Both ductile cast iron and S13800 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is ductile cast iron and the bottom bar is S13800 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 160 to 310 | |
290 to 480 |
Elastic (Young's, Tensile) Modulus, GPa | 170 to 180 | |
200 |
Elongation at Break, % | 2.1 to 20 | |
11 to 18 |
Poisson's Ratio | 0.28 to 0.31 | |
0.28 |
Shear Modulus, GPa | 64 to 70 | |
77 |
Shear Strength, MPa | 420 to 800 | |
610 to 1030 |
Tensile Strength: Ultimate (UTS), MPa | 460 to 920 | |
980 to 1730 |
Tensile Strength: Yield (Proof), MPa | 310 to 670 | |
660 to 1580 |
Thermal Properties
Latent Heat of Fusion, J/g | 270 | |
280 |
Maximum Temperature: Mechanical, °C | 290 | |
810 |
Melting Completion (Liquidus), °C | 1160 | |
1450 |
Melting Onset (Solidus), °C | 1120 | |
1410 |
Specific Heat Capacity, J/kg-K | 490 | |
470 |
Thermal Conductivity, W/m-K | 31 to 36 | |
16 |
Thermal Expansion, µm/m-K | 11 | |
11 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.4 | |
2.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.8 to 9.4 | |
2.6 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.9 | |
15 |
Density, g/cm3 | 7.1 to 7.5 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.5 | |
3.4 |
Embodied Energy, MJ/kg | 21 | |
46 |
Embodied Water, L/kg | 43 | |
140 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 17 to 80 | |
150 to 190 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 280 to 1330 | |
1090 to 5490 |
Stiffness to Weight: Axial, points | 12 to 14 | |
14 |
Stiffness to Weight: Bending, points | 24 to 26 | |
25 |
Strength to Weight: Axial, points | 17 to 35 | |
35 to 61 |
Strength to Weight: Bending, points | 18 to 29 | |
28 to 41 |
Thermal Diffusivity, mm2/s | 8.9 to 10 | |
4.3 |
Thermal Shock Resistance, points | 17 to 35 | |
33 to 58 |
Alloy Composition
Aluminum (Al), % | 0 | |
0.9 to 1.4 |
Carbon (C), % | 3.0 to 3.5 | |
0 to 0.050 |
Chromium (Cr), % | 0 | |
12.3 to 13.2 |
Iron (Fe), % | 93.7 to 95.5 | |
73.6 to 77.3 |
Manganese (Mn), % | 0 | |
0 to 0.2 |
Molybdenum (Mo), % | 0 | |
2.0 to 3.0 |
Nickel (Ni), % | 0 | |
7.5 to 8.5 |
Nitrogen (N), % | 0 | |
0 to 0.010 |
Phosphorus (P), % | 0 to 0.080 | |
0 to 0.010 |
Silicon (Si), % | 1.5 to 2.8 | |
0 to 0.1 |
Sulfur (S), % | 0 | |
0 to 0.0080 |