MakeItFrom.com
Menu (ESC)

EN 1.0031 Steel vs. AWS E80C-Ni3

Both EN 1.0031 steel and AWS E80C-Ni3 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0031 steel and the bottom bar is AWS E80C-Ni3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
27
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Tensile Strength: Ultimate (UTS), MPa 310
630
Tensile Strength: Yield (Proof), MPa 210
530

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
51
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
23
Embodied Water, L/kg 45
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 11
22
Strength to Weight: Bending, points 13
21
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 9.8
19

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.12
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 98.8 to 100
92.8 to 97.3
Manganese (Mn), % 0 to 0.7
0 to 1.5
Nickel (Ni), % 0
2.8 to 3.8
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 0.9
Sulfur (S), % 0 to 0.045
0 to 0.030
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5