EN 1.0031 Steel vs. EN 1.0220 Steel
Both EN 1.0031 steel and EN 1.0220 steel are iron alloys. Both are furnished in the cold worked (strain hardened) condition. Their average alloy composition is basically identical.
For each property being compared, the top bar is EN 1.0031 steel and the bottom bar is EN 1.0220 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 89 | |
110 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 28 | |
23 |
Fatigue Strength, MPa | 160 | |
210 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 200 | |
250 |
Tensile Strength: Ultimate (UTS), MPa | 310 | |
390 |
Tensile Strength: Yield (Proof), MPa | 210 | |
290 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
400 |
Melting Completion (Liquidus), °C | 1470 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 53 | |
51 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
7.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.0 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
1.8 |
Density, g/cm3 | 7.9 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.4 |
Embodied Energy, MJ/kg | 18 | |
18 |
Embodied Water, L/kg | 45 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 78 | |
80 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 120 | |
230 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 11 | |
14 |
Strength to Weight: Bending, points | 13 | |
15 |
Thermal Diffusivity, mm2/s | 14 | |
14 |
Thermal Shock Resistance, points | 9.8 | |
12 |
Alloy Composition
Carbon (C), % | 0 to 0.1 | |
0 to 0.16 |
Iron (Fe), % | 98.8 to 100 | |
98.2 to 100 |
Manganese (Mn), % | 0 to 0.7 | |
0 to 1.2 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.045 |
Silicon (Si), % | 0 to 0.35 | |
0 to 0.35 |
Sulfur (S), % | 0 to 0.045 | |
0 to 0.045 |