MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. ASTM A182 Grade F92

Both EN 1.0033 steel and ASTM A182 grade F92 are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 32
22
Fatigue Strength, MPa 120 to 140
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 200
440
Tensile Strength: Ultimate (UTS), MPa 300 to 330
690
Tensile Strength: Yield (Proof), MPa 150 to 200
500

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
590
Melting Completion (Liquidus), °C 1470
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
26
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
40
Embodied Water, L/kg 45
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
140
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 10 to 12
24
Strength to Weight: Bending, points 13 to 14
22
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 9.4 to 10
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.11
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Iron (Fe), % 98.8 to 100
85.8 to 89.1
Manganese (Mn), % 0 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010