MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. AWS E430Nb

Both EN 1.0033 steel and AWS E430Nb are iron alloys. They have 81% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is AWS E430Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 32
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 300 to 330
500

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 53
24
Thermal Expansion, µm/m-K 12
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 18
45
Embodied Water, L/kg 45
120

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 10 to 12
18
Strength to Weight: Bending, points 13 to 14
18
Thermal Diffusivity, mm2/s 14
6.6
Thermal Shock Resistance, points 9.4 to 10
13

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.1
Chromium (Cr), % 0
15 to 18
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 98.8 to 100
76.2 to 84.5
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030