MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. EN 1.0225 Steel

Both EN 1.0033 steel and EN 1.0225 steel are iron alloys. Their average alloy composition is basically identical.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 32
6.7 to 24
Fatigue Strength, MPa 120 to 140
170 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 200
280 to 290
Tensile Strength: Ultimate (UTS), MPa 300 to 330
440 to 500
Tensile Strength: Yield (Proof), MPa 150 to 200
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 45
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
140 to 390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 10 to 12
16 to 18
Strength to Weight: Bending, points 13 to 14
16 to 18
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 9.4 to 10
14 to 16

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.21
Iron (Fe), % 98.8 to 100
98 to 100
Manganese (Mn), % 0 to 0.7
0 to 1.4
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.35
0 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.045

Comparable Variants