MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. EN 1.4512 Stainless Steel

Both EN 1.0033 steel and EN 1.4512 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is EN 1.4512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 32
28
Fatigue Strength, MPa 120 to 140
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 200
310
Tensile Strength: Ultimate (UTS), MPa 300 to 330
470
Tensile Strength: Yield (Proof), MPa 150 to 200
240

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
720
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 53
25
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 18
27
Embodied Water, L/kg 45
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
110
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 10 to 12
17
Strength to Weight: Bending, points 13 to 14
17
Thermal Diffusivity, mm2/s 14
6.7
Thermal Shock Resistance, points 9.4 to 10
17

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.030
Chromium (Cr), % 0
10.5 to 12.5
Iron (Fe), % 98.8 to 100
84.8 to 89.5
Manganese (Mn), % 0 to 0.7
0 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0 to 0.65