MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. EN 1.8946 Steel

Both EN 1.0033 steel and EN 1.8946 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is EN 1.8946 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 32
16
Fatigue Strength, MPa 120 to 140
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 200
350
Tensile Strength: Ultimate (UTS), MPa 300 to 330
580
Tensile Strength: Yield (Proof), MPa 150 to 200
390

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
43
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
23
Embodied Water, L/kg 45
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
82
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
410
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 10 to 12
20
Strength to Weight: Bending, points 13 to 14
20
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 9.4 to 10
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Carbon (C), % 0 to 0.11
0 to 0.15
Chromium (Cr), % 0
0.25 to 1.4
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 98.8 to 100
94.8 to 99.5
Manganese (Mn), % 0 to 0.7
0 to 1.1
Nickel (Ni), % 0
0 to 0.7
Niobium (Nb), % 0
0 to 0.065
Phosphorus (P), % 0 to 0.045
0.050 to 0.16
Silicon (Si), % 0 to 0.35
0 to 0.8
Sulfur (S), % 0 to 0.045
0 to 0.035
Titanium (Ti), % 0
0 to 0.12
Vanadium (V), % 0
0 to 0.14