MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. Grade Ti-Pd16 Titanium

EN 1.0033 steel belongs to the iron alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 32
17
Fatigue Strength, MPa 120 to 140
200
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 300 to 330
390
Tensile Strength: Yield (Proof), MPa 150 to 200
310

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1470
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 53
22
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
36
Embodied Energy, MJ/kg 18
600
Embodied Water, L/kg 45
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
62
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 10 to 12
24
Strength to Weight: Bending, points 13 to 14
26
Thermal Diffusivity, mm2/s 14
8.9
Thermal Shock Resistance, points 9.4 to 10
30

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.1
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.8 to 100
0 to 0.3
Manganese (Mn), % 0 to 0.7
0
Nickel (Ni), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
98.8 to 99.96
Residuals, % 0
0 to 0.4