MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. C50100 Bronze

EN 1.0033 steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 32
40
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 200
180
Tensile Strength: Ultimate (UTS), MPa 300 to 330
270
Tensile Strength: Yield (Proof), MPa 150 to 200
82

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 53
230
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
55
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
55

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 45
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
82
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
29
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 10 to 12
8.3
Strength to Weight: Bending, points 13 to 14
10
Thermal Diffusivity, mm2/s 14
66
Thermal Shock Resistance, points 9.4 to 10
9.5

Alloy Composition

Carbon (C), % 0 to 0.11
0
Copper (Cu), % 0
98.6 to 99.49
Iron (Fe), % 98.8 to 100
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.7
0
Phosphorus (P), % 0 to 0.045
0.010 to 0.050
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0.5 to 0.8
Residuals, % 0
0 to 0.5