MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. S32615 Stainless Steel

Both EN 1.0033 steel and S32615 stainless steel are iron alloys. They have 53% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is S32615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 32
28
Fatigue Strength, MPa 120 to 140
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 200
400
Tensile Strength: Ultimate (UTS), MPa 300 to 330
620
Tensile Strength: Yield (Proof), MPa 150 to 200
250

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 400
990
Melting Completion (Liquidus), °C 1470
1350
Melting Onset (Solidus), °C 1420
1310
Specific Heat Capacity, J/kg-K 470
500
Thermal Expansion, µm/m-K 12
15

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
24
Density, g/cm3 7.9
7.6
Embodied Carbon, kg CO2/kg material 1.4
4.4
Embodied Energy, MJ/kg 18
63
Embodied Water, L/kg 45
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
140
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 10 to 12
23
Strength to Weight: Bending, points 13 to 14
21
Thermal Shock Resistance, points 9.4 to 10
15

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.070
Chromium (Cr), % 0
16.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 98.8 to 100
46.4 to 57.9
Manganese (Mn), % 0 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
0.3 to 1.5
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 0.35
4.8 to 6.0
Sulfur (S), % 0 to 0.045
0 to 0.030