MakeItFrom.com
Menu (ESC)

EN 1.0033 Steel vs. S44660 Stainless Steel

Both EN 1.0033 steel and S44660 stainless steel are iron alloys. They have 66% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0033 steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86 to 96
210
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17 to 32
20
Fatigue Strength, MPa 120 to 140
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 200
410
Tensile Strength: Ultimate (UTS), MPa 300 to 330
660
Tensile Strength: Yield (Proof), MPa 150 to 200
510

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 53
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
4.3
Embodied Energy, MJ/kg 18
61
Embodied Water, L/kg 45
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 83
120
Resilience: Unit (Modulus of Resilience), kJ/m3 63 to 100
640
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 10 to 12
24
Strength to Weight: Bending, points 13 to 14
22
Thermal Diffusivity, mm2/s 14
4.5
Thermal Shock Resistance, points 9.4 to 10
21

Alloy Composition

Carbon (C), % 0 to 0.11
0 to 0.030
Chromium (Cr), % 0
25 to 28
Iron (Fe), % 98.8 to 100
60.4 to 71
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0