MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. 6110 Aluminum

EN 1.0038 steel belongs to the iron alloys classification, while 6110 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is 6110 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23 to 25
2.2
Fatigue Strength, MPa 140 to 160
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 240 to 270
290
Tensile Strength: Ultimate (UTS), MPa 380 to 430
500
Tensile Strength: Yield (Proof), MPa 200 to 220
500

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 49
170
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
42
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
140

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 1.4
8.2
Embodied Energy, MJ/kg 19
150
Embodied Water, L/kg 48
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
11
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
1770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 13 to 15
51
Strength to Weight: Bending, points 15 to 16
51
Thermal Diffusivity, mm2/s 13
67
Thermal Shock Resistance, points 12 to 13
22

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.4
Carbon (C), % 0 to 0.23
0
Chromium (Cr), % 0 to 0.3
0.040 to 0.25
Copper (Cu), % 0 to 0.6
0.2 to 0.7
Iron (Fe), % 97.1 to 100
0 to 0.8
Magnesium (Mg), % 0
0.5 to 1.1
Manganese (Mn), % 0 to 1.5
0.2 to 0.7
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.55
0.7 to 1.5
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15