MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. AISI 410 Stainless Steel

Both EN 1.0038 steel and AISI 410 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is AISI 410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 25
16 to 22
Fatigue Strength, MPa 140 to 160
190 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 240 to 270
330 to 470
Tensile Strength: Ultimate (UTS), MPa 380 to 430
520 to 770
Tensile Strength: Yield (Proof), MPa 200 to 220
290 to 580

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
710
Melting Completion (Liquidus), °C 1460
1530
Melting Onset (Solidus), °C 1420
1480
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
30
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 19
27
Embodied Water, L/kg 48
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
97 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
210 to 860
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13 to 15
19 to 28
Strength to Weight: Bending, points 15 to 16
19 to 24
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 12 to 13
18 to 26

Alloy Composition

Carbon (C), % 0 to 0.23
0.080 to 0.15
Chromium (Cr), % 0 to 0.3
11.5 to 13.5
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 97.1 to 100
83.5 to 88.4
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0 to 0.75
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030