MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. EN 1.4035 Stainless Steel

Both EN 1.0038 steel and EN 1.4035 stainless steel are iron alloys. They have 86% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 25
18
Fatigue Strength, MPa 140 to 160
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 240 to 270
430
Tensile Strength: Ultimate (UTS), MPa 380 to 430
690
Tensile Strength: Yield (Proof), MPa 200 to 220
400

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
760
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
29
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
7.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 19
27
Embodied Water, L/kg 48
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
420
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13 to 15
25
Strength to Weight: Bending, points 15 to 16
22
Thermal Diffusivity, mm2/s 13
7.8
Thermal Shock Resistance, points 12 to 13
25

Alloy Composition

Carbon (C), % 0 to 0.23
0.43 to 0.5
Chromium (Cr), % 0 to 0.3
12.5 to 14
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 97.1 to 100
82.1 to 86.9
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.55
0 to 1.0
Sulfur (S), % 0 to 0.045
0.15 to 0.35