EN 1.0038 Steel vs. EN 1.5414 Steel
Both EN 1.0038 steel and EN 1.5414 steel are iron alloys. Their average alloy composition is basically identical.
For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is EN 1.5414 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 110 to 120 | |
170 to 180 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 23 to 25 | |
22 |
Fatigue Strength, MPa | 140 to 160 | |
250 to 270 |
Impact Strength: V-Notched Charpy, J | 28 to 31 | |
46 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
73 |
Shear Strength, MPa | 240 to 270 | |
350 to 370 |
Tensile Strength: Ultimate (UTS), MPa | 380 to 430 | |
550 to 580 |
Tensile Strength: Yield (Proof), MPa | 200 to 220 | |
350 to 380 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
410 |
Melting Completion (Liquidus), °C | 1460 | |
1470 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 49 | |
44 |
Thermal Expansion, µm/m-K | 12 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
7.3 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.4 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.1 | |
2.6 |
Density, g/cm3 | 7.8 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.6 |
Embodied Energy, MJ/kg | 19 | |
21 |
Embodied Water, L/kg | 48 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 72 to 88 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 110 to 130 | |
320 to 370 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 13 to 15 | |
19 to 20 |
Strength to Weight: Bending, points | 15 to 16 | |
19 to 20 |
Thermal Diffusivity, mm2/s | 13 | |
12 |
Thermal Shock Resistance, points | 12 to 13 | |
16 to 17 |
Alloy Composition
Carbon (C), % | 0 to 0.23 | |
0 to 0.2 |
Chromium (Cr), % | 0 to 0.3 | |
0 to 0.3 |
Copper (Cu), % | 0 to 0.6 | |
0 to 0.3 |
Iron (Fe), % | 97.1 to 100 | |
96.4 to 98.7 |
Manganese (Mn), % | 0 to 1.5 | |
0.9 to 1.5 |
Molybdenum (Mo), % | 0 to 0.080 | |
0.45 to 0.6 |
Nickel (Ni), % | 0 to 0.3 | |
0 to 0.3 |
Nitrogen (N), % | 0 to 0.014 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.015 |
Silicon (Si), % | 0 to 0.55 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.045 | |
0 to 0.0050 |