MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. EN 1.6368 Steel

Both EN 1.0038 steel and EN 1.6368 steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 25
18
Fatigue Strength, MPa 140 to 160
310 to 330
Impact Strength: V-Notched Charpy, J 28 to 31
43 to 46
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 240 to 270
410 to 430
Tensile Strength: Ultimate (UTS), MPa 380 to 430
660 to 690
Tensile Strength: Yield (Proof), MPa 200 to 220
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 48
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
580 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 15
23 to 24
Strength to Weight: Bending, points 15 to 16
21 to 22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 12 to 13
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0 to 0.23
0 to 0.17
Chromium (Cr), % 0 to 0.3
0 to 0.3
Copper (Cu), % 0 to 0.6
0.5 to 0.8
Iron (Fe), % 97.1 to 100
95.1 to 97.2
Manganese (Mn), % 0 to 1.5
0.8 to 1.2
Molybdenum (Mo), % 0 to 0.080
0.25 to 0.5
Nickel (Ni), % 0 to 0.3
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0 to 0.014
0 to 0.020
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.55
0.25 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.010