MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. EN 1.7375 Steel

Both EN 1.0038 steel and EN 1.7375 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is EN 1.7375 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 120
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23 to 25
20
Fatigue Strength, MPa 140 to 160
270
Impact Strength: V-Notched Charpy, J 28 to 31
80
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 240 to 270
380
Tensile Strength: Ultimate (UTS), MPa 380 to 430
620
Tensile Strength: Yield (Proof), MPa 200 to 220
400

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
23
Embodied Water, L/kg 48
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
420
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13 to 15
22
Strength to Weight: Bending, points 15 to 16
20
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 12 to 13
18

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.040
Carbon (C), % 0 to 0.23
0.1 to 0.15
Chromium (Cr), % 0 to 0.3
2.0 to 2.5
Copper (Cu), % 0 to 0.6
0 to 0.25
Iron (Fe), % 97.1 to 100
94.5 to 96.7
Manganese (Mn), % 0 to 1.5
0.3 to 0.8
Molybdenum (Mo), % 0 to 0.080
0.9 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.3
Nitrogen (N), % 0 to 0.014
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.55
0 to 0.3
Sulfur (S), % 0 to 0.045
0 to 0.010