MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. Nickel 625

EN 1.0038 steel belongs to the iron alloys classification, while nickel 625 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is nickel 625.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23 to 25
33 to 34
Fatigue Strength, MPa 140 to 160
240 to 320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
79
Shear Strength, MPa 240 to 270
530 to 600
Tensile Strength: Ultimate (UTS), MPa 380 to 430
790 to 910
Tensile Strength: Yield (Proof), MPa 200 to 220
320 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
330
Maximum Temperature: Mechanical, °C 400
980
Melting Completion (Liquidus), °C 1460
1350
Melting Onset (Solidus), °C 1420
1290
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 49
11
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
80
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 1.4
14
Embodied Energy, MJ/kg 19
190
Embodied Water, L/kg 48
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
220 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
260 to 490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 13 to 15
26 to 29
Strength to Weight: Bending, points 15 to 16
22 to 24
Thermal Diffusivity, mm2/s 13
2.9
Thermal Shock Resistance, points 12 to 13
22 to 25

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.23
0 to 0.1
Chromium (Cr), % 0 to 0.3
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 97.1 to 100
0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0 to 0.080
8.0 to 10
Nickel (Ni), % 0 to 0.3
58 to 68.9
Niobium (Nb), % 0
3.2 to 4.2
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.55
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0 to 0.4