EN 1.0038 Steel vs. SAE-AISI 50B60 Steel
Both EN 1.0038 steel and SAE-AISI 50B60 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.
For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is SAE-AISI 50B60 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 110 to 120 | |
180 to 190 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 23 to 25 | |
12 to 20 |
Fatigue Strength, MPa | 140 to 160 | |
240 to 330 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
72 |
Shear Strength, MPa | 240 to 270 | |
380 |
Tensile Strength: Ultimate (UTS), MPa | 380 to 430 | |
610 to 630 |
Tensile Strength: Yield (Proof), MPa | 200 to 220 | |
350 to 530 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
410 |
Melting Completion (Liquidus), °C | 1460 | |
1450 |
Melting Onset (Solidus), °C | 1420 | |
1410 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 49 | |
45 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.2 | |
7.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 8.3 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 2.1 | |
2.0 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
1.4 |
Embodied Energy, MJ/kg | 19 | |
19 |
Embodied Water, L/kg | 48 | |
48 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 72 to 88 | |
71 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 110 to 130 | |
330 to 750 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 13 to 15 | |
22 to 23 |
Strength to Weight: Bending, points | 15 to 16 | |
20 to 21 |
Thermal Diffusivity, mm2/s | 13 | |
12 |
Thermal Shock Resistance, points | 12 to 13 | |
20 |
Alloy Composition
Boron (B), % | 0 | |
0.00050 to 0.0030 |
Carbon (C), % | 0 to 0.23 | |
0.56 to 0.64 |
Chromium (Cr), % | 0 to 0.3 | |
0.4 to 0.6 |
Copper (Cu), % | 0 to 0.6 | |
0 |
Iron (Fe), % | 97.1 to 100 | |
97.3 to 98.1 |
Manganese (Mn), % | 0 to 1.5 | |
0.75 to 1.0 |
Molybdenum (Mo), % | 0 to 0.080 | |
0 |
Nickel (Ni), % | 0 to 0.3 | |
0 |
Nitrogen (N), % | 0 to 0.014 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.035 |
Silicon (Si), % | 0 to 0.55 | |
0.15 to 0.35 |
Sulfur (S), % | 0 to 0.045 | |
0 to 0.040 |