MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. C81400 Copper

EN 1.0038 steel belongs to the iron alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 23 to 25
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 380 to 430
370
Tensile Strength: Yield (Proof), MPa 200 to 220
250

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1070
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 49
260
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
60
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
61

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 48
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
36
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 13 to 15
11
Strength to Weight: Bending, points 15 to 16
13
Thermal Diffusivity, mm2/s 13
75
Thermal Shock Resistance, points 12 to 13
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Carbon (C), % 0 to 0.23
0
Chromium (Cr), % 0 to 0.3
0.6 to 1.0
Copper (Cu), % 0 to 0.6
98.4 to 99.38
Iron (Fe), % 97.1 to 100
0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.55
0
Sulfur (S), % 0 to 0.045
0
Residuals, % 0
0 to 0.5