MakeItFrom.com
Menu (ESC)

EN 1.0038 Steel vs. C87610 Bronze

EN 1.0038 steel belongs to the iron alloys classification, while C87610 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0038 steel and the bottom bar is C87610 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23 to 25
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 380 to 430
350
Tensile Strength: Yield (Proof), MPa 200 to 220
140

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1460
970
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 49
28
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
2.6
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 48
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72 to 88
62
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 130
88
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 13 to 15
11
Strength to Weight: Bending, points 15 to 16
13
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 12 to 13
13

Alloy Composition

Carbon (C), % 0 to 0.23
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.6
90 to 94
Iron (Fe), % 97.1 to 100
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0 to 0.25
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.55
3.0 to 5.0
Sulfur (S), % 0 to 0.045
0
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.5