MakeItFrom.com
Menu (ESC)

EN 1.0050 Steel vs. 5154A Aluminum

EN 1.0050 steel belongs to the iron alloys classification, while 5154A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0050 steel and the bottom bar is 5154A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
58 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 18
1.1 to 19
Fatigue Strength, MPa 190
83 to 160
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 330
140 to 210
Tensile Strength: Ultimate (UTS), MPa 530
230 to 370
Tensile Strength: Yield (Proof), MPa 280
96 to 320

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
190
Melting Completion (Liquidus), °C 1470
650
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 53
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
32
Electrical Conductivity: Equal Weight (Specific), % IACS 7.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.4
8.8
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
4.0 to 36
Resilience: Unit (Modulus of Resilience), kJ/m3 210
68 to 760
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 19
24 to 38
Strength to Weight: Bending, points 18
31 to 43
Thermal Diffusivity, mm2/s 14
53
Thermal Shock Resistance, points 17
10 to 16

Alloy Composition

Aluminum (Al), % 0
93.7 to 96.9
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 99.876 to 100
0 to 0.5
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.055
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0 to 0.055
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15