MakeItFrom.com
Menu (ESC)

EN 1.0050 Steel vs. C15500 Copper

EN 1.0050 steel belongs to the iron alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0050 steel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 18
3.0 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 330
190 to 320
Tensile Strength: Ultimate (UTS), MPa 530
280 to 550
Tensile Strength: Yield (Proof), MPa 280
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 250
210
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1470
1080
Melting Onset (Solidus), °C 1430
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 53
350
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
90
Electrical Conductivity: Equal Weight (Specific), % IACS 7.8
91

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
33
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 45
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 210
72 to 1210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 19
8.6 to 17
Strength to Weight: Bending, points 18
11 to 17
Thermal Diffusivity, mm2/s 14
100
Thermal Shock Resistance, points 17
9.8 to 20

Alloy Composition

Copper (Cu), % 0
99.75 to 99.853
Iron (Fe), % 99.876 to 100
0
Magnesium (Mg), % 0
0.080 to 0.13
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.055
0.040 to 0.080
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.055
0
Residuals, % 0
0 to 0.2