MakeItFrom.com
Menu (ESC)

EN 1.0060 Steel vs. ACI-ASTM CN3M Steel

Both EN 1.0060 steel and ACI-ASTM CN3M steel are iron alloys. They have 47% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0060 steel and the bottom bar is ACI-ASTM CN3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 13
34
Fatigue Strength, MPa 200
150
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
80
Tensile Strength: Ultimate (UTS), MPa 630
500
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
13
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.8
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
31
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
5.9
Embodied Energy, MJ/kg 18
80
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70
130
Resilience: Unit (Modulus of Resilience), kJ/m3 250
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 14
3.4
Thermal Shock Resistance, points 20
11

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 22
Iron (Fe), % 99.876 to 100
42.4 to 52.5
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
23 to 27
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.055
0 to 0.030
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0 to 0.055
0 to 0.030