MakeItFrom.com
Menu (ESC)

EN 1.0070 Steel vs. C443.0 Aluminum

EN 1.0070 steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0070 steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
65
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 9.1
9.0
Fatigue Strength, MPa 210
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Shear Strength, MPa 440
130
Tensile Strength: Ultimate (UTS), MPa 740
230
Tensile Strength: Yield (Proof), MPa 350
100

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
630
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 53
140
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.8
37
Electrical Conductivity: Equal Weight (Specific), % IACS 7.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 1.4
7.9
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 45
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
17
Resilience: Unit (Modulus of Resilience), kJ/m3 320
70
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 14
58
Thermal Shock Resistance, points 23
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 99.876 to 100
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.055
0
Silicon (Si), % 0
4.5 to 6.0
Sulfur (S), % 0 to 0.055
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25