MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. EN 1.0545 Steel

Both EN 1.0108 steel and EN 1.0545 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is EN 1.0545 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
24
Fatigue Strength, MPa 150
270
Impact Strength: V-Notched Charpy, J 38
48
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 250
350
Tensile Strength: Ultimate (UTS), MPa 380
550
Tensile Strength: Yield (Proof), MPa 200
370

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
45
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.7
Embodied Energy, MJ/kg 19
23
Embodied Water, L/kg 48
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
370
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
19
Strength to Weight: Bending, points 15
19
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0 to 0.015
Carbon (C), % 0 to 0.13
0 to 0.22
Chromium (Cr), % 0 to 0.3
0 to 0.35
Copper (Cu), % 0 to 0.3
0 to 0.6
Iron (Fe), % 97.5 to 99.98
95.5 to 99.15
Manganese (Mn), % 0 to 0.7
0.85 to 1.8
Molybdenum (Mo), % 0 to 0.080
0 to 0.13
Nickel (Ni), % 0 to 0.3
0 to 0.55
Niobium (Nb), % 0 to 0.010
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 0.55
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.040
0 to 0.060
Vanadium (V), % 0 to 0.020
0 to 0.14