MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. EN 1.4369 Stainless Steel

Both EN 1.0108 steel and EN 1.4369 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is EN 1.4369 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
260
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
40
Fatigue Strength, MPa 150
330
Impact Strength: V-Notched Charpy, J 38
91
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 250
580
Tensile Strength: Ultimate (UTS), MPa 380
850
Tensile Strength: Yield (Proof), MPa 200
390

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1400
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
14
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.5
3.0
Embodied Energy, MJ/kg 19
43
Embodied Water, L/kg 48
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
280
Resilience: Unit (Modulus of Resilience), kJ/m3 110
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13
31
Strength to Weight: Bending, points 15
26
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.13
0.070 to 0.15
Chromium (Cr), % 0 to 0.3
17.5 to 19.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
63 to 70.2
Manganese (Mn), % 0 to 0.7
5.0 to 7.5
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
6.5 to 8.5
Niobium (Nb), % 0 to 0.010
0
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
0.5 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0