MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. EN 1.4410 Stainless Steel

Both EN 1.0108 steel and EN 1.4410 stainless steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
260
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 29
24
Fatigue Strength, MPa 150
410
Impact Strength: V-Notched Charpy, J 38
90
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 73
81
Shear Strength, MPa 250
540
Tensile Strength: Ultimate (UTS), MPa 380
850
Tensile Strength: Yield (Proof), MPa 200
600

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 50
15
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
20
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
4.0
Embodied Energy, MJ/kg 19
56
Embodied Water, L/kg 48
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110
880
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13
30
Strength to Weight: Bending, points 15
26
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.13
0 to 0.030
Chromium (Cr), % 0 to 0.3
24 to 26
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
58.1 to 66.8
Manganese (Mn), % 0 to 0.7
0 to 2.0
Molybdenum (Mo), % 0 to 0.080
3.0 to 4.5
Nickel (Ni), % 0 to 0.3
6.0 to 8.0
Niobium (Nb), % 0 to 0.010
0
Nitrogen (N), % 0
0.24 to 0.35
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0