MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. EN 1.4742 Stainless Steel

Both EN 1.0108 steel and EN 1.4742 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is EN 1.4742 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 29
17
Fatigue Strength, MPa 150
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 250
370
Tensile Strength: Ultimate (UTS), MPa 380
600
Tensile Strength: Yield (Proof), MPa 200
300

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 50
19
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.0
Density, g/cm3 7.9
7.6
Embodied Carbon, kg CO2/kg material 1.5
2.2
Embodied Energy, MJ/kg 19
32
Embodied Water, L/kg 48
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
84
Resilience: Unit (Modulus of Resilience), kJ/m3 110
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13
22
Strength to Weight: Bending, points 15
21
Thermal Diffusivity, mm2/s 13
5.1
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0.7 to 1.2
Carbon (C), % 0 to 0.13
0 to 0.12
Chromium (Cr), % 0 to 0.3
17 to 19
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
77.2 to 81.6
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.35
0.7 to 1.4
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0