MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. EN 1.8519 Steel

Both EN 1.0108 steel and EN 1.8519 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is EN 1.8519 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
360
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
10
Fatigue Strength, MPa 150
630
Impact Strength: V-Notched Charpy, J 38
28
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 250
710
Tensile Strength: Ultimate (UTS), MPa 380
1200
Tensile Strength: Yield (Proof), MPa 200
1030

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
450
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.9
Embodied Energy, MJ/kg 19
26
Embodied Water, L/kg 48
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110
2790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
43
Strength to Weight: Bending, points 15
32
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 12
35

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.13
0.27 to 0.34
Chromium (Cr), % 0 to 0.3
2.3 to 2.7
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
95.7 to 97.1
Manganese (Mn), % 0 to 0.7
0.4 to 0.7
Molybdenum (Mo), % 0 to 0.080
0.15 to 0.25
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0.1 to 0.2