MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. CC750S Brass

EN 1.0108 steel belongs to the iron alloys classification, while CC750S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is CC750S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
54
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 29
13
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 380
200
Tensile Strength: Yield (Proof), MPa 200
80

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Maximum Temperature: Mechanical, °C 400
130
Melting Completion (Liquidus), °C 1460
860
Melting Onset (Solidus), °C 1420
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 50
110
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
24
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
26

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
25
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.5
2.8
Embodied Energy, MJ/kg 19
46
Embodied Water, L/kg 48
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
22
Resilience: Unit (Modulus of Resilience), kJ/m3 110
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 13
6.8
Strength to Weight: Bending, points 15
9.3
Thermal Diffusivity, mm2/s 13
35
Thermal Shock Resistance, points 12
6.7

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0 to 0.1
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
62 to 67
Iron (Fe), % 97.5 to 99.98
0 to 0.8
Lead (Pb), % 0
1.0 to 3.0
Manganese (Mn), % 0 to 0.7
0 to 0.2
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.050
Silicon (Si), % 0 to 0.35
0 to 0.050
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 1.5
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0
26.3 to 36