MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. CC761S Brass

EN 1.0108 steel belongs to the iron alloys classification, while CC761S brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is CC761S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
150
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 29
8.7
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 380
540
Tensile Strength: Yield (Proof), MPa 200
340

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
960
Melting Onset (Solidus), °C 1420
910
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 50
27
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
43

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 19
45
Embodied Water, L/kg 48
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
41
Resilience: Unit (Modulus of Resilience), kJ/m3 110
530
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 13
8.0
Thermal Shock Resistance, points 12
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0 to 0.1
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
78 to 83
Iron (Fe), % 97.5 to 99.98
0 to 0.6
Lead (Pb), % 0
0 to 0.8
Manganese (Mn), % 0 to 0.7
0 to 0.2
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
3.0 to 5.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0
8.9 to 19