MakeItFrom.com
Menu (ESC)

EN 1.0108 Steel vs. SAE-AISI 1042 Steel

Both EN 1.0108 steel and SAE-AISI 1042 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0108 steel and the bottom bar is SAE-AISI 1042 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 29
14 to 18
Fatigue Strength, MPa 150
230 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 250
380 to 420
Tensile Strength: Ultimate (UTS), MPa 380
620 to 700
Tensile Strength: Yield (Proof), MPa 200
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 48
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
87 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 110
320 to 900
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
22 to 25
Strength to Weight: Bending, points 15
21 to 22
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 12
20 to 22

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.13
0.4 to 0.47
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
98.5 to 99
Manganese (Mn), % 0 to 0.7
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0