MakeItFrom.com
Menu (ESC)

EN 1.0114 Steel vs. C95410 Bronze

EN 1.0114 steel belongs to the iron alloys classification, while C95410 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0114 steel and the bottom bar is C95410 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
160 to 200
Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
9.1 to 13
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 430
620 to 740
Tensile Strength: Yield (Proof), MPa 220
260 to 380

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
1030
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 52
59
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
28
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
54
Embodied Water, L/kg 47
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
57 to 64
Resilience: Unit (Modulus of Resilience), kJ/m3 130
280 to 630
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15
21 to 25
Strength to Weight: Bending, points 16
20 to 22
Thermal Diffusivity, mm2/s 14
16
Thermal Shock Resistance, points 13
22 to 26

Alloy Composition

Aluminum (Al), % 0
10 to 11.5
Carbon (C), % 0 to 0.19
0
Copper (Cu), % 0 to 0.6
83 to 85.5
Iron (Fe), % 97.6 to 100
3.0 to 5.0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 0
1.5 to 2.5
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.040
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5